
Sullins 16

Chris Sullins

Philosophy of Technology

12 December 2006

Open Source as Human Endeavor
Technology is a human activity. Some would even argue that it is one of the foremost traits that set us apart from the animal kingdom. As our technology advanced, it became more and more prominent in our lives, until the progression of available technology began to outpace our ability to easily incorporate it into our world views. It is unlikely that early man felt in his everyday life such discontent with how the stone axe transformed his culture. Indeed, in the Greek and Roman civilizations, there was a near-stagnation of available technology for hundreds of years. Today, every generation thinks about technology in vastly different ways than did the preceding one. This is a significant departure from the previous trend of a static level of technology, and it prompts profound questions about where we are going as a race.
As a human activity, technology has the potential to be good, or neutral, or evil. It is entirely dependent on the use to which it is put. We can either instill it with our human values, or we can instill it with monstrous values. Like Dr. Frankenstein, we must choose which path to pursue. As we create technology, we also create ourselves; let us be direct about what we mean to be.
Digital culture is the locomotive that outpaced the horse of traditional technology, and our culture has not yet finished its resulting metamorphosis. We can see this transformation in the way that business models are changing from centralized control to modular relationships; we can see it in the culture of the internet; and we can especially see it in the recent phenomenon called “open source.”

Open source springs from hacker culture, which holds that digital information practically begs to be copied — that music and video and software have all been commoditized. Some go so far to say that all things that can be transferred as bits ought to be because to do so is sheer creation of value. Open source imports these concepts into the creation of software; instead of the opaque barrier of an executable file, the human-readable instructions (source code) for the computer are available to anyone who wants to learn from them or to use them. It is the difference between a wilderness enclosed in a barbed-wire electric fence and a wilderness open to anyone who wants to directly experience its wonder.

Open source is many things. It is a threat to companies who make their money off of traditional licensing. It is a fascinating success story in the realm of social models. It is a refutation of our conventional ideas of property. It is an embracing of human morals in the sphere of technology. Most importantly, open source is a uniquely human endeavor.

Potential Problems with Open Source

Open source is a strange concept in a world where most services are businesses: it creates a product, but receives no direct benefit from selling it. Instead of salaried employees, it depends on a community of motivated programmers who volunteer their time. The question is whether this sort of model can be feasible, and how we can make it feasible if we decide that it is worthwhile.
With open source software, the source code is available for anyone to see and download, alter and distribute. Here we arrive at a tragedy of the commons: why should anyone submit their time to a project that will benefit everyone when if someone else does it they will benefit without expending any cost?
There are very few business models that can be built around open source software. Some companies, like Mandrake Linux, release their operating systems for free but charge for support. Still, these are peripheral to the real power of the hacker culture. Hacker culture thrives not due to submitting to the free-market philosophies, but appealing instead to an older ideal: that of a gift culture. A gift-based culture is a culture of abundance, which, if it exists anywhere, exists in this age of digital distribution of products. Gift cultures can be particularly suited to creative work, because of the free exchange of resources that exists. “They are free themselves – so there is a high content of freedom in resources – and they come from free men, in the sense of men who don’t suffer conditionings from a hierarchical structure and are able to, they have the capability to, freely express their human nature” (Faldetta, 185). Faldetta believes that freedom is not merely an abstract concept, but that it is an integral piece of the functioning of a creative economy.
A gift-based culture revolves around reputation. If a person has a reputation for being a generous man, others will be more likely to befriend him and give him gifts “in return,” because they know that their friendship will be rewarded. “In gift cultures, social status is determined not by what you control but by what you give away” (Raymond 81). Instead of the free-market coercion that drives our present economy, it is a proactive system. A person must help others before he is helped in return. Even considering that the digital sphere of the economy is a culture of abundance, how can such a system survive in today’s free-market economy?
The first question to answer is what motivates a person to donate his time to an open source project when he could be using it to make more money or more directly improve the quality of his life. This is a complicated question, but it has been addressed by many previous examiners of the problem, so we can look to them for the answer. Steven Weber, in his book The Success of Open Source, defines six categories of motivations that he has arrived at through examining various research projects:

1. Art and beauty

2. Job as vocation

3. The joint enemy

4. Ego boosting

5. Reputation

6. Identity and belief systems (Weber 135)
First of all, there is art and beauty. Many programmers, especially those that subscribe to the hacker culture, believe that the solving of certain types of problems is a joy in itself. They take pleasure in the art of the job to be done. An open source project then becomes their way of sharing their art with the world: a gallery of sorts. Job as vocation is inextricably linked to this; it means there is a higher calling to writing code, and sharing a solution with others is fulfilling to such an individual.
The joint enemy is a motivation that occurs when there is some entity that restricts its users, or doesn’t provide the proper features, or pursues litigation against people whom the community feels don’t deserve such treatment. In such a case, programmers may band together to fight against a common foe.

The fourth and fifth reasons are very similar, and they relate to how one is perceived by others in the same culture. Programmers desire be recognized as highly-skilled, and such reputation can actually lead to direct benefits such as jobs. Essentially,

Ego gratification is important because it stems from peer recognition. Peer recognition is important because it creates a reputation. A reputation as a great programmer is valuable because it can be turned into money in commercial settings—in the form of job offers, privileged access to venture capital, the ability to attract cooperation from other great programmers (Weber 141).
Finally, there are the idealists, who believe not just in the benefits of open source software but that it is a good in itself and a cause worthy of their time. They may like the image of themselves as a hacker and therefore subscribe to the ideals of that community. To understand the identity and belief systems, Weber compiles another list of key tenets to hacker culture:

1. Access to computers should be unlimited — the so-called hands-on imperative.

2. Information should be “free.”

3. Mistrust authority and promote decentralization.

4. Judge people only on the value of what they create, not who they are or what credentials they present.

5. People can create art and beauty on computers.

6. Computers can change human life for the better (Weber 144).
These motivations and ideals have been built into the concept of software in general, and they continue to gain more ground as more and more of the tech community identifies with hacker ideals. As the generations pass like an ever-incoming tide upon the beach, they begin at the point to which the preceding generation extended current thought and advance it in order to more fully embrace the new possibilities. Hackerdom is likely to become more and more integral to the software community in general. But individuals are not the only proponents of open-source software.
About 95% of software is developed in-house, which means that it is never meant to be marketed and sold but rather to solve a particular internal problem of the corporation. Sometimes companies will solve their particular problems and then release the solution into the open source world. Eric S. Raymond brings up the case of Cisco and their printer queue system. The Cisco corporation needed to have a network of printers that could dynamically handle printer malfunctions and many print requests, automatically routing each print job to the printer nearest the computer that requested it. To deal with the problem Cisco developed their own software to manage the printers. They realized that the programmers who created it might not be around forever and therefore the expertise that built and maintained the system might eventually disappear. As a result, Cisco decided to release it as an open source project so that it would always be maintained for the latest technology, simultaneously solving their problem of maintenance and contributing to the open source community (Raymond 131).
Large corporations benefit from not paying exorbitant license fees, and open source allows them to do that. They also benefit from being able to modify the source code themselves in order to make the programs fit their needs perfectly. Therefore, organizations of sufficient size stand to benefit greatly by supporting open source. A few case examples are provided in The Cathedral and the Bazaar:
O’Reilly can afford to pay the leaders of Perl and Apache to do their thing because it expects their efforts will enable it to sell more Perl- and Apache- related books and draw more people to its conferences. VA Linux systems can fund its laboratory branch because Linux boosts the use value of the workstations and servers it sells. And Red Hat funds Red Had Advanced Development Labs to increase the value of its Linux offering and attract more customers (Raymond 156).

Lessig, in his essay Open Source Baselines, supports the promotion of open source by the government, which stands to benefit in the same way as large corporations do. Government reliance on a particular operating system such as Microsoft Windows reinforces any near-monopoly that program enjoys and incurs a vase expense in licensing fees. At the very least, he argues that the government should maintain an attitude of equity and discourage business practices that make it difficult for open source to succeed where it would otherwise thrive. In his stronger case, the government ought to fund think tanks for the particular development of open source that would benefit the nation as a whole.
Finally, we arrive at a final possible set of business models based around the gift culture: donation-based software development. These donations can come either before or after the program is created. If before, the incentive is that the programmer will spend his time solving the problem after he gets past a certain level of donations. If after, the programmer will continue to create software of good quality. With all of these possibilities for open source promotion it seems likely that if open source is destined to success, the people who embrace it will be able to push it to fruition. All that remains is for the rest of the culture to accept it.
Open Source Promotes a Healthy Software Ecosystem
The system of software companies looks remarkably like an ecosystem when it is examined on a very abstract level. If each project or company is compared to an individual organism, both systems are simply hierarchical sets of relationships between competing entities. The open source ecosystem is equivalent to the market, where funding becomes the most fundamental resource for which organisms compete. To look at it even more closely, the languages in which programs are written can be compared to the language that defines the functioning of a living organism: DNA. Respectively, the processes by which programs develop and are tested are equivalent to natural selection. In fact, like the natural world we can see that it is not always obvious which “organism” will survive in the software market until the scenario is actually played out among consumers.
The current software environment, if we ignore the open source programs, is much like an extremely primitive ecosystem. Each organism competes against its fellows for possession of those few basic resources: water and sunlight. The organism that can most efficiently gather and hoard resources and exclude other organisms is going to be the most successful. It is easy to see how this ecosystem will conclude: there will shortly be an abundance of very simple life forms that are very good at competing but not much else. They will possess no biological ingenuity because they don’t need to: they never become highly developed because there is no higher level on which to compete. In other words, the ecosystem becomes stagnant; there is a level of complexity past which it is impossible to proceed.
Open source brings a new dimension into the ecosystem. No longer are relationships between organisms limited to mere resource competition; now the ecosystem can expand to include layered hierarchies of relationships. There are sister projects that share codebases and programmers, which is very similar to certain symbiotic relationships between organisms. There are certain basic sets of code that support all sorts of more advanced programs, a bit like the nitrogen-fixing bacteria in the soil that are required for plants to live. There are also higher level integrations, like browsers into other programs, which would be analogous to the predator-prey relationships that support more sophisticated animals.
It is easy to see that a software environment which allows for such interactions is to our extreme human benefit. After all, what we desire are complicated programs that perform tasks that are as far beyond the monolithic computers of the late sixties as humans are beyond Precambrian unicellular organisms. By our standards, a deeper ecosystem is a more “successful” one and will therefore be valued more highly. Even if the monetary returns are not as great as in closed source development, the entire world of software will move forward, which is the most important goal.

Past a certain level of complication, it becomes prohibitively difficult to program something from the ground up. The only way to overcome this restriction is to continually raise the level on which we program. In fulfilling this function, open source, like herd herbivores, stands to become the backbone of the entirety of programming. Closed source tends to die out, whereas a good open source project is immortal: “In a future that includes competition from open source, we can expect that the eventual destiny of any software technology will be to either die or become part of the open infrastructure itself” (Raymond, 163).
Other open source projects are poised to become lead players — alpha predators, so to speak. Firefox has for some time been the most advanced browser in the ecosystem, and it is quickly overtaking Internet Explorer in market share. Even with the version 7 release, Internet Explorer was merely able to catch up with the leading browsers, not to surpass them. Open source has proven time and time again more adaptable than closed source, even when it has to deal with the unbalanced difficulties of closed formats like the Microsoft Word document format. In the end, the most successful formats are the open standards, such as the network protocols which were

designed for sharing, not exclusive use. Discrimination, at the heart of a property system, was not possible at the heart of [the network] system. The system was coded to be free. That was its nature (Lessig 182).
This hints at the probability that open source will be the standard in the future simply because it is open and transparent. Non-discriminatory systems seem more likely to persist in our modern society.
Notice that in no way does this argument denigrate closed source. Rather, it speaks to the folly of a system comprised solely of closed source organisms. Advanced closed source, more than any other type of program, at times fills the niche of the top-level predator of the ecosystem. Companies producing such software can take open source and build another level on top of it in order to sell it. In this way, the software can take advantage of the layers of complexity of a deep ecosystem, as well as the streamlining of a competitive environment. Closed source has its niche, but it must remember its place.
Open Source Is Successful in Its Own Regard
To extend the metaphor of biological organisms further, we can look at the success of the human species. Since open source’s success results from its ability to form communities and advanced relationships between organisms, and since humans are the poster child of community organisms, it is an ideal comparison.
Humans, in the purely physical sense, are not such an impressive species. We are not as strong as most of our primate relatives, even compared to those half our size. We don’t have enough fur to keep us warm in the colder climates in which the majority of our species lives. We don’t possess impressive teeth, fearsome claws, or intricate defense mechanisms. What humans do possess is adaptability. We have the ability to work together as a group, largely facilitated by our ability to create and communicate abstractions. These quanta of cultural information are known as memes. Richard Dawkins, the evolutionary biologist who invented the term (though not the concept), introduces them with his usual eloquence:

I think that a new kind of replicator has recently emerged on this very planet. It is staring us in the face. It is still in its infancy, still drifting clumsily about in its primeval soup, but already it is achieving evolutionary change at a rate which leaves the old gene panting behind (Dawkins 206).
Memes allow for better learning than does the long-term development of instinctual behavior. While instinct is hard-wired into the brain through natural selection, memetics is much more flexible, relying on a psychological method for passing the ideas. Open source already has a similar method: the transparency of the source code, plus the ability of humans to interpret those digital memes and implement them elsewhere. Since programmers can see the source code, they can determine how certain problems were solved in one program and use the same concepts to solve a similar issue in another program. Alternatively, they might innovate a new method for performing the same task in a more efficient manner, and then submit the same changes to the parent program. As Eric S. Raymond states,

The [open source] ecology as a whole has a more rapid response to market demands, and more capability to resist shocks and regenerate itself, than any monolithic vendor of a closed-source operating system can possibly muster (Raymond 153).
Closed source requires that every new program completely redo a lot of other work that has been done. Since programmers tend to believe it “almost criminal to reinvent the wheel,” they tend to keep repositories of work that they have done in the past so that they might use the same concepts later (Weber 138). In the same vein, “software coders in general are better off if there is a great deal of free software for them to draw upon” (Lessig 60). With closed source projects they have only their own ingenuity on which to rely, whereas open source projects can draw upon the ingenuity of anyone who is willing to donate their ideas. Open source stands rooted the model in which human behavior has been based for ages. If someone has an idea, it spreads as quickly as social and political barriers will allow because it improves the quality of life everywhere. The spread of a programming innovation improves the quality of programs everywhere.

Essentially, memetics is so powerful because it places evolution into a much shorter timeframe. Just as microorganisms can adapt faster than can humans, memetics can transform an organism faster than can biological processes. When you shift that concept into the realm of software, already a field in constant flux, you get amazingly accelerated growth in all areas.

Now we see this paradoxical idea come to the front: organisms are most successful with a strong ability to cooperate rather than a strong ability to compete. In fact, competition reduces the total resources of the resources required for the very act of competing. It seems natural that the software model that can best assimilate this cooperation paradigm will be the most successful in the long-term. From our comparisons with biological systems, open source seems the obvious best candidate.

Open Source Embodies Human Ideals
We have been looking at open source primarily as a foundational organism, one upon which other organisms can subsist. The perfect example of such a species would be the cow. Many species prey on cattle, and without them the larger predators would in all likelihood starve. What would motivate us to elevate herd species like cows over top-level predators like leopards? Don’t we associate ourselves more intimately with the latter?
The answer is that humans possess similarities to both types of organism. We are undoubtedly social animals, but we also qualify as top-level predators. In that we respect the most complicated, highest-level organisms, we should embrace leopards, and in that we approve of community, we should embrace cows. Although they might find that slightly odd.
Ultimately, we want our software to succeed. Open source’s ability to cooperate, and therefore be more successful, is an even stronger point than the idea of a richer ecosystem, although it relies heavily upon the former concept. Just as humans rely on the environment to survive, the most successful open-source projects depend on those essential base-level projects upon which they are built. As long as the environment continues to be rich enough to support those highest projects, they will continue to be fantastically successful.

An important question at this venture is whether closed source projects have the ability to cooperate just like open source projects. The answer is that of course they do; as human undertakings, ideas can take on human ideals such as cooperation simply through the actions of the humans in control of them. The difficulty here is that they are not built to be shared; they are built to avoid sharing. If a company is not proactive enough to seek out alliances and share the production load, it must by default work entirely under its own steam. Even when companies decide to cooperate, they are still limited by their own business models; they can never garner the same advantages as can open source projects. This corresponds to the difference between pointing a person in the right direction on a difficult problem and actually helping him to understand and solve it. This latter sort more efficiently advances both parties to a higher level.

Humans have memetic preference structures that promote certain values, because we see these values as higher goods. The salient value here is altruism, or more particularly, work for the common good. This is one explanation for why a hacker will devote a good deal of his time to coding a fantastic program to share it with the world free of charge. Altruism is a powerful human value, demonstrated by many of our ethical judgments: it is good to give up your place in line to an old lady; it is good to share food with the needy; it is good to be the one to volunteer for the dangerous mission.
These ideals would not be found in a solitary top predator. A leopard could not develop a sense of sharing on any large scale because it always acts to promote its own personal values. It will defend its territory, even if it could more efficiently hunt by cooperating (if its brain were wired that way). Closed source, like the leopard, cannot fundamentally embrace altruism.
Open source, on the other hand, is a perfect fit. In its most fundamental form it is pure altruism, as in the case of a hacker diligently applying himself to solve a problem that will benefit a great number of people. This is a perfect denial of the tragedy of the commons: it is not a logical refutation but a refusal to be bound by such petty theories. Humans care about the things that open source embodies.

Now to the difficulty of open source: namely, that it is poorly funded. Luckily, humans are not entirely subservient to the free-market economy and the cult of egoism. We are able to transcend these, at least through the application of moral systems and value judgments, and to promote goals that do not entirely boil down to our own self-interest. Open source, in appealing to that nature, will attract certain people who feel that is the best way they can express these human ideals. As a society, we have a strong duty to promote such urges, especially when they end up being so productive. The market, after all, is only beneficial in as much as it promotes our ideals. The production gap that serves as the incentive to create is only there because it is necessary, not because it is a good in itself (Lessig 59). If we are able to avoid it, we ought to, thus generating the most value for the greatest number of people.

Open Source Is Good
Open source is good both practically and morally. It promotes a more complex system of interaction between software “organisms” that results in the highest levels of the software ecosystem being raised to a more advanced state. Like the human race, it is a cooperative species. As long as it has the resources to grow, it will outperform its closed-source rivals in the long run. Since it has the ability to communicate, it can imitate memetics much more easily than can closed source. Thus can it take advantage of the greater speed of memetic evolution compared to conventional evolution.

Also, open source embodies our ideals, whereas closed source to some extent denies them. Open source is much better suited to the kind of animal we are because of its roots in cooperative systems. Open source culture embraces our morals, and open source technology embodies them.

As humans, we decide our future. We can choose to embrace those values we hold dear and thrust away from us the ones we abhor. Regarding technology, we have the same ability to decide how it will shape us. If we wish to accept technology and not be made inhuman by it, we must allow it to exhibit the values that we as human embrace, thereby buttressing our moral foundations. If we bow down to the question of whether technology is unchangeably good or evil, we admit that we are slaves to it. Then, whether or not it is evil is of no importance — we have already surrendered our humanity to the question. Technology is a human activity; we can show ourselves to be masters of it and therefore of ourselves.
Open source is an exemplar of this approach to technology. Open source is human in the very way we wish to be. In the very way we are not sure technology can be. Let us not be slaves to the question. Let us create technology just as we create ourselves.

Let it be human.
BIBLIOGRAPHY

Books
Dawkins, Richard. The Selfish Gene. New York: Oxford University Press, 1978.

Levy, Pierre. Cyberculture. Robert Bononno. Minneapolis: University of Minnesota Press, 2001.

Raymond, Eric. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. Sebastopol, 2001.

Weber, Steven. The Success of Open Source. Cambridge: Harvard University Press, 2004.

Articles / Essays
Daniel Lyons. “The Cheap Revolution.” Forbes 178 (September 2006): 102-11.

Guglielmo Faldetta. “The Content of Freedom in Resources: The Open Source Model.” Journal of Business Ethics (August 2002): 179-88.

Lessig, Lawrence. “The Architecture of Innovation.” Duke Law Journal 51 (2002): 177-91.

Lessig, Lawrence. “Open Source Baselines: Compared to What?” Government Policy toward Open Source Software. Washington, D.C.: Brookings Institution Press, 2003.

The Content of Freedom in Resources: The Open Source Model

In his paper, Guglielmo Faldetta approaches the idea of open source software as an organizational model. It is arranged in chronological order, so he begins with the Fordian model of central decision-making and peripheral carrying out of the orders, and proceeds to examine the Japanese model of involving many levels in the decision-making, then the Italian model of industrial districts where there is a multitude of independent firms that interact with one another. Finally, he reaches the open-source model. Open source, he says, is “a production model that is based on the gift culture” which is based on an abundance of resources; this is precisely what we have today.

Throughout the paper, he looks at how each of the models promotes individual satisfaction and involvement, thereby (in his opinion) promoting production. He doesn’t so much address the problem of how open source is to be supported. Instead, he prefers to focus on the quality of the work, how creative it is and how reliable it is.

Faldetta focuses at the very end of the paper on a sort of trustworthiness that free software has, particularly that “the users want a good product and the developers stake their reputation: there is no subject that comes between them, so there is nobody who… leaves some mistakes inside his own software in order that he can release and sell future versions that are better.” While I think this is remarkably pessimistic about closed source software, I think he makes a good point about the disconnect between profit margins and the user’s needs.

This paper is a very specific look at open source as a business model, but he is concerned mostly with business ethics. The open source model appeals in that it may be just as or more productive than the closed source model, but also that it respects men and their dignity. It is worth reading for its insight and its succinctness.

Cyberculture
Pierre Levy, at the beginning of his book, accurately states “I am generally—and correctly—considered to be an optimist” (Levy ix). This is largely because he doesn’t automatically jump to the conclusion that technology is corrupting everything that makes us human. Instead, Levy takes the stance that technology is precisely what we make it; like any tool it has the potential to be good or evil depending on the purpose to which it is put. Levy has a faith in humankind that is impossible to scoff at, no matter how poorly-placed that faith may seem.

Levy’s book approaches the problem of philosophy of technology by mixing case studies with interpretation. He is fascinated by the idea of shared content, and speaks in the context of the production of music, of distributed inventiveness, and the human relationship to knowledge. Some of his more pertinent points to this essay involve his viewing language itself as an open standard in much the same way as html is an open standard; his point that the internet, one of the most transformative technologies in the history of man, was created by the same people who wanted to use it; and his examination of cyberculture versus the “virtual class”.

His most prominent strength is also his biggest weakness: his optimism. Instead of arguing the base case of whether technology is inherently good or neutral or evil, he is able to look farther into the future and see where it is taking us. He peers intently into the glass of current events, and asks what they mean to us as people, rather than asking whether technology is transforming us into soulless automatons. I think that he gets to some interesting areas that other philosophers manage to miss entirely, because they are focused less on the practical and actual effects of technology than on the metaphysical and fundamental meaning of technology.

The Success of Open Source
Steven Weber is unapologetically a political scientist. His method is thorough, and he is fully-versed in hacker literature. He deftly quotes Richard Stallman, Eric S. Raymond, and other leading figures of the open source movement. The most useful among all the useful things in the book are his lists: lists of the ideals of the hacker movement, lists of the motivations for individuals to create open source software, lists of what particular things open source developers do, etc.
His book is perhaps the most professional of the approaches, and the most meticulously factual. He cares not about the question in that he desires that open source succeed, but rather in examining an interesting social phenomenon. The purpose of the book is in this pursuit: “To get a more nuanced understanding of what is at stake, we first should confront in detail the problem of how open source comes to be, what its boundaries and constraints are, what makes it work as a social and economic system, and what that system in turn makes possible elsewhere” (Weber 8).
The book, due to its goals and tendencies, was thus most important in explaining the roots of open source culture. Since it makes no judgments about whether the trend is good or bad, it is a perfect source of information and trends, but not as a corroborative source for personal valuation of the movement. As the most impartial, it would be a perfect book to read to get the gist of the movement.
The Cathedral and the Bazaar

Eric S. Raymond is a vocal proponent of open source, even to the point of zealotry at times. He lives in the culture, and indeed helped found the culture. As such, he gives a much more personal view of hacker culture and the philosophies behind it, in a series of well-reasoned essays. Each essay addresses a particular subset of the subject matter relating to open source philosophy. He uses many case examples in which he was personally involved. At times it is possible to see his own prejudices seeping through the words, but he tends to be less rabidly pro-open source than some voices out there.
The first essay in this book presents a quick but thorough history of the open source movement. The second addresses the theory behind the efficacy of the open source development process. The third essay suggests that the customs that control open source software are rooted in land tenure theory and that hacker culture itself is based in a gift-culture model of society. The fourth essay is critical of the most ubiquitous applications of open source theory, and explains why in some cases it is a bad idea to move to an open source model; it also clearly underlines the aspects of a business that would benefit from an open source model. The fifth essay looks at current happenings in the hacker revolution of electronic culture and traces the trends forward to make predictions about the future. At the end of the book is an appendix titled “How to Become a Hacker,” which should be self-evident.

The Cathedral and the Bazaar is widely regarded as a sort of open source manifesto. It is a required reading in the pursuit of understanding hacker culture. Eric S. Raymond correctly and egoistically denotes himself as the unofficial historian and apologist of the open source movement.

Open Source Baselines: Compared to What?
Lawrence Lessig is an important man in the world of electronic freedoms. He founded the creative commons, which is a way for creators to license their works to be used more freely in the public domain, and he has been recognized by the Free Software Foundation for his work promoting open source and fighting stringent copyright laws. His primary occupation is that of a lawyer, where he fights for the causes that he values. Because of this, many of his examples are taken directly from the courtroom. He is more concerned with openness of information and communication than with open source software, but he is still concerned with this related topic.

This essay focuses on economics and public policy. He addresses the particular opposition of Microsoft to licenses such as the GPL, which is a viral open source license. That is, any work that uses the code in a GPL-licensed program must also be licensed under the GPL. Microsoft is rightly concerned that this sort of licensing will block it out of the market because of the exclusivity, but Lessig points out that Microsoft’s licensing scheme is similarly restrictive; all but a few arguments fall apart in that comparison.

Eventually, Lessig comes to the conclusion that the government could legitimately remain neutral in the debate, but that it is likely to arrive at “the conclusion that open code is preferable to proprietary code” (Lessig 68). In the process, he raises tough questions about the legitimacy of software patents and provides a strong case for preferring open formats over closed ones. It is quite a useful essay.
